翻訳と辞書 |
Dynamic quartz recrystallization : ウィキペディア英語版 | Dynamic quartz recrystallization thumb Quartz is the most abundant single mineral in the earth's crust (behind the feldspar group),〔 〕 and as such is present in a very large proportion of rocks both as primary crystals and as detrital grains in sedimentary and metamorphic rocks. Dynamic recrystallization is a process of crystal regrowth under conditions of stress and elevated temperature, commonly applied in the fields of metallurgy and materials science. Dynamic quartz recrystallization happens in a relatively predictable way with relation to temperature, and given its abundance quartz recrystallization can be used to easily determine relative temperature profiles, for example in orogenic belts or near intrusions. ==Mechanisms of recrystallization== Previous research has outlined several dislocation creep regimes present in experimental conditions. Two main mechanisms for altering grain boundaries have been defined. The first is the process by which quartz softens as temperature increases, providing a means for internal stress reduction by migration of dislocations in the crystal lattice, known as dislocation creep. These dislocations concentrate into walls, forming new grain boundaries. The other process involves differences in stored strain energy between neighboring grains, resulting in migration of existing grain boundaries. The extent to which these occur is a function of strain rate and temperature, those being, respectively, the factors controlling introduction of new dislocations and the ability of dislocations to migrate and form subgrain boundaries which themselves migrate.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Dynamic quartz recrystallization」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|